Bug fixes and convenience improvements.

This commit is contained in:
Johannes Maier
2024-01-12 01:33:08 +01:00
parent 7f74e2934c
commit 74bed6b74d

61
vuln.c
View File

@@ -16,6 +16,7 @@ typedef enum Register { Adelheid = 0, Berthold = 1, Cornelia = 2, Dora = 3, Enge
typedef struct Instruction { typedef struct Instruction {
Opcode opcode; Opcode opcode;
Register reg1; Register reg1;
uint8_t padding[2]; // unused
union { union {
Register reg2; Register reg2;
uint32_t imm; uint32_t imm;
@@ -42,12 +43,12 @@ static uint8_t register_id_lookup[COUNT_REGISTERS] = {
size_t get_size_t(size_t limit) { size_t get_size_t(size_t limit) {
size_t val; size_t val;
char buf[0x10]; char buf[0x10] = {0};
char *end_ptr; char *end_ptr;
do { do {
if (fgets(buf, sizeof(buf), stdin) == NULL) { if (fgets(buf, sizeof(buf), stdin) == NULL)
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
}
val = strtoull(buf, &end_ptr, 0); val = strtoull(buf, &end_ptr, 0);
if (buf == end_ptr) { if (buf == end_ptr) {
@@ -55,25 +56,27 @@ size_t get_size_t(size_t limit) {
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
if (val <= limit) { if (val <= limit)
break; break;
}
puts("Nah, that's to long. Let's try again."); puts("Nah, that's too long. Let's try again.");
} while (true); } while (true);
return val; return val;
} }
Instruction *get_program(size_t *program_len) { Instruction *get_program(size_t *program_len) {
puts("Now to your next program: How long should it bee?"); printf("Now to your next program: How long should it bee?");
size_t len = get_size_t(MAX_PROGRAM_LEN); size_t len = get_size_t(MAX_PROGRAM_LEN);
Instruction *program = malloc(len * sizeof(Instruction)); Instruction *program = malloc(len * sizeof(Instruction));
if (program == NULL) { if (program == NULL) {
puts("Cannot malloc anything!");
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
printf("Now your program:");
if (fread(program, sizeof(Instruction), len, stdin) != len) { if (fread(program, sizeof(Instruction), len, stdin) != len) {
puts("You did not enter as many instructions as you wanted. Learn counting, idiot!"); puts("You did not enter as many instructions as you wanted. Learn counting, idiot!");
free(program); free(program);
@@ -89,13 +92,11 @@ bool instr_use_reg2(Opcode opcode) { return opcode == ADD || opcode == SUB || op
bool validate_program(Instruction *program, size_t len) { bool validate_program(Instruction *program, size_t len) {
for (size_t i = 0; i < len; ++i) { for (size_t i = 0; i < len; ++i) {
// prevent use of wrong opcodes or registers // prevent use of wrong opcodes or registers
if (program[i].opcode >= COUNT_OPCODES || program[i].reg1 >= COUNT_REGISTERS) { if (program[i].opcode >= COUNT_OPCODES || program[i].reg1 >= COUNT_REGISTERS)
return false; return false;
}
if (instr_use_reg2(program[i].opcode) && program[i].reg2 >= COUNT_REGISTERS) { if (instr_use_reg2(program[i].opcode) && program[i].reg2 >= COUNT_REGISTERS)
return false; return false;
}
} }
return true; return true;
} }
@@ -106,10 +107,10 @@ void init_seccomp() {
void exec_code(uint8_t *code) { void exec_code(uint8_t *code) {
exec_func_t exec_func = (exec_func_t)code; exec_func_t exec_func = (exec_func_t)code;
init_seccomp();
close(0); close(0);
close(1); close(1);
close(2); close(2);
init_seccomp();
uint8_t res = exec_func(); uint8_t res = exec_func();
_exit(res); _exit(res);
} }
@@ -127,7 +128,7 @@ void gen_3B_native_instr(uint8_t opcode, uint8_t reg1_id, uint8_t reg2_id, uint8
size_t native_instr = 0b01001000L + (EXTRACT_REX_BIT(reg2_id) << 2) + EXTRACT_REX_BIT(reg1_id); size_t native_instr = 0b01001000L + (EXTRACT_REX_BIT(reg2_id) << 2) + EXTRACT_REX_BIT(reg1_id);
native_instr += opcode << 8; // opcode native_instr += opcode << 8; // opcode
// registers: direct addressing + lower 3 bit of second reg id + lower 3 bit of first reg id // registers: direct addressing + lower 3 bit of second reg id + lower 3 bit of first reg id
native_instr += (0b11000000L + (reg2_id << 3) + reg1_id) << 16; native_instr += (0b11000000L + ((reg2_id & 0b111) << 3) + (reg1_id & 0b111)) << 16;
write_instr(code, offset, (uint8_t *)&native_instr, 3); write_instr(code, offset, (uint8_t *)&native_instr, 3);
native_instr = 0; native_instr = 0;
@@ -151,7 +152,6 @@ void gen_code(uint8_t *code, Instruction *program, size_t program_len) {
for (size_t pc = 0; pc < program_len; ++pc) { for (size_t pc = 0; pc < program_len; ++pc) {
Instruction instr = program[pc]; Instruction instr = program[pc];
switch (instr.opcode) { switch (instr.opcode) {
// TODO: encode regs
case ADD: case ADD:
// add reg1, reg2 // add reg1, reg2
gen_3B_native_instr(0x01, register_id_lookup[instr.reg1], register_id_lookup[instr.reg2], code, &offset); gen_3B_native_instr(0x01, register_id_lookup[instr.reg1], register_id_lookup[instr.reg2], code, &offset);
@@ -165,8 +165,8 @@ void gen_code(uint8_t *code, Instruction *program, size_t program_len) {
reg1_id = register_id_lookup[instr.reg1]; reg1_id = register_id_lookup[instr.reg1];
native_instr = (0b01001000L + EXTRACT_REX_BIT(reg1_id)); // REW.X prefix (we use 64bit registers) + upper bit of the first register id native_instr = (0b01001000L + EXTRACT_REX_BIT(reg1_id)); // REW.X prefix (we use 64bit registers) + upper bit of the first register id
native_instr += 0x81L << 8; // opcode native_instr += 0x81L << 8; // opcode
native_instr += (0b11000000L + reg1_id) << 16; // registers: direct addressing + lower 3 bit of first reg id native_instr += (0b11000000L + (reg1_id & 0b111)) << 16; // registers: direct addressing + lower 3 bit of first reg id
native_instr += ((size_t)program[pc].imm + acc) << 16; // immediate native_instr += ((size_t)program[pc].imm + acc) << 24; // immediate
write_instr(code, &offset, (uint8_t *)&native_instr, 7); write_instr(code, &offset, (uint8_t *)&native_instr, 7);
native_instr = 0; native_instr = 0;
acc = 0; acc = 0;
@@ -194,8 +194,8 @@ void gen_code(uint8_t *code, Instruction *program, size_t program_len) {
reg1_id = register_id_lookup[instr.reg1]; reg1_id = register_id_lookup[instr.reg1];
native_instr = (0b01001000L + EXTRACT_REX_BIT(reg1_id)); // REW.X prefix (we use 64bit registers) + upper bit of the first register id native_instr = (0b01001000L + EXTRACT_REX_BIT(reg1_id)); // REW.X prefix (we use 64bit registers) + upper bit of the first register id
native_instr += 0xc7 << 8; // opcode native_instr += 0xc7 << 8; // opcode
native_instr += (0b11000000L + reg1_id) << 16; // registers: direct addressing + lower 3 bit of first reg id native_instr += (0b11000000L + (reg1_id & 0b111)) << 16; // registers: direct addressing + lower 3 bit of first reg id
native_instr += ((size_t)program[pc].imm) << 16; // immediate native_instr += ((size_t)program[pc].imm) << 24; // immediate
write_instr(code, &offset, (uint8_t *)&native_instr, 7); write_instr(code, &offset, (uint8_t *)&native_instr, 7);
native_instr = 0; native_instr = 0;
break; break;
@@ -205,21 +205,23 @@ void gen_code(uint8_t *code, Instruction *program, size_t program_len) {
} }
} }
// epilog: exit program, use lower 8bit of Adelheid as return value // epilog: return lower 8bit of Adelheid as return value
// mov rdi, Adelheid // mov rdi, Adelheid
gen_3B_native_instr(0x89, 0b0111, register_id_lookup[Adelheid], code, &offset); gen_3B_native_instr(0x89, 0b0111, register_id_lookup[Adelheid], code, &offset);
// mov rax, SYS_EXIT (i.e. mov rax, 0x3c) // ret
*(uint64_t *)&code[offset] = 0x0000003cc0c748; code[offset] = 0xc3;
// syscall
*(uint16_t *)&code[offset + 7] = 0x050f;
} }
int run_jit(Instruction *program, size_t len) { uint8_t run_jit(Instruction *program, size_t len) {
// TODO: // an instruction takes up at most 7B + prolog + epilog
size_t expected_code_len = 0; size_t expected_code_len = 7 * len + 3 * COUNT_REGISTERS + 4;
// page alignment // page alignment
size_t allocated_code_len = (expected_code_len + 0xFFF) & ~0xFFF; size_t allocated_code_len = (expected_code_len + 0xFFF) & ~0xFFF;
// TODO: remove this!!
printf("Allocating %ld B for your code!\n", allocated_code_len);
// TODO: maybe randomly choose address to make exploitation harder
// allocate memory for context and code // allocate memory for context and code
uint8_t *code = (uint8_t *)mmap(NULL, allocated_code_len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); uint8_t *code = (uint8_t *)mmap(NULL, allocated_code_len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (code == (void *)-1) { if (code == (void *)-1) {
@@ -268,14 +270,15 @@ int run_jit(Instruction *program, size_t len) {
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
uint8_t exit_code = WEXITSTATUS(wstatus); return WEXITSTATUS(wstatus);
return exit_code;
} }
int main() { int main() {
// TODO: signal handlers? SIGCHILD? seccomp? // TODO: signal handlers? SIGCHILD? seccomp?
setbuf(stdout, NULL);
setbuf(stdin, NULL);
// TODO: better pun, add reference to pop-culture // TODO: better pun, add reference to pop-culture
puts("Welcome to JIT-aaS (Just In Time - always a Surprise)"); puts("Welcome to JIT-aaS (Just In Time - always a Surprise)");