301 lines
9.6 KiB
C
301 lines
9.6 KiB
C
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/wait.h>
|
|
#include <unistd.h>
|
|
|
|
#define MAX_PROGRAM_LEN 0x1000
|
|
|
|
typedef enum Opcode : uint8_t { ADD = 0, ADDI = 1, SUB = 2, COPY = 3, LOADI = 4, COUNT_OPCODES } Opcode;
|
|
|
|
typedef enum Register : uint8_t { Adelheid = 0, Berthold = 1, Cornelia = 2, Dora = 3, Engelbert = 4, Friedrich = 5, Giesela = 6, Heinrich = 7, COUNT_REGISTERS } Register;
|
|
|
|
typedef struct Instruction {
|
|
Opcode opcode;
|
|
Register reg1;
|
|
union {
|
|
Register reg2;
|
|
uint32_t imm;
|
|
};
|
|
} Instruction;
|
|
|
|
typedef int (*exec_func_t)();
|
|
|
|
static __attribute__((unused)) bool premium_activated = false;
|
|
|
|
// Take a look at https://wiki.osdev.org/X86-64_Instruction_Encoding#Registers for more information.
|
|
static uint8_t register_id_lookup[COUNT_REGISTERS] = {
|
|
0b0000, // A is mapped to rax
|
|
0b0011, // B to rbx
|
|
0b0001, // C to rcx
|
|
0b0010, // D to rdx
|
|
0b0110, // E to rsi
|
|
0b0111, // F to rdi
|
|
0b1000, // G to r8
|
|
0b1001, // H to r9
|
|
};
|
|
|
|
#define EXTRACT_REX_BIT(x) ((x >> 3) & 1)
|
|
|
|
size_t get_size_t(size_t limit) {
|
|
size_t val;
|
|
char buf[0x10];
|
|
char *end_ptr;
|
|
do {
|
|
if (fgets(buf, sizeof(buf), stdin) == NULL) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
val = strtoull(buf, &end_ptr, 0);
|
|
|
|
if (buf == end_ptr) {
|
|
puts("That's not a integer, come back when you passed elementary school!");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (val <= limit) {
|
|
break;
|
|
}
|
|
|
|
puts("Nah, that's to long. Let's try again.");
|
|
} while (true);
|
|
return val;
|
|
}
|
|
|
|
Instruction *get_program(size_t *program_len) {
|
|
puts("Now to your next program: How long should it bee?");
|
|
size_t len = get_size_t(MAX_PROGRAM_LEN);
|
|
|
|
Instruction *program = malloc(len * sizeof(Instruction));
|
|
|
|
if (program == NULL) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (fread(program, sizeof(Instruction), len, stdin) != len) {
|
|
puts("You did not enter as many instructions as you wanted. Learn counting, idiot!");
|
|
free(program);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
*program_len = len;
|
|
return program;
|
|
}
|
|
|
|
bool instr_use_reg2(Opcode opcode) { return opcode == ADD || opcode == SUB || opcode == COPY; }
|
|
|
|
bool validate_program(Instruction *program, size_t len) {
|
|
for (size_t i = 0; i < len; ++i) {
|
|
// prevent use of wrong opcodes or registers
|
|
if (program[i].opcode >= COUNT_OPCODES || program[i].reg1 >= COUNT_REGISTERS) {
|
|
return false;
|
|
}
|
|
|
|
if (instr_use_reg2(program[i].opcode) && program[i].reg2 >= COUNT_REGISTERS) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void init_seccomp() {
|
|
// TODO:
|
|
}
|
|
|
|
void exec_code(uint8_t *code) {
|
|
exec_func_t exec_func = (exec_func_t)code;
|
|
init_seccomp();
|
|
close(0);
|
|
close(1);
|
|
close(2);
|
|
uint8_t res = exec_func();
|
|
_exit(res);
|
|
}
|
|
|
|
void write_instr(uint8_t *code, size_t *offset, const uint8_t *instr, size_t instr_len) {
|
|
for (size_t i = 0; i < instr_len; ++i) {
|
|
code[*offset + i] = instr[i];
|
|
}
|
|
|
|
*offset += instr_len;
|
|
}
|
|
|
|
void gen_3B_native_instr(uint8_t opcode, uint8_t reg1_id, uint8_t reg2_id, uint8_t *code, size_t *offset) {
|
|
// REW.X prefix (we use 64bit registers) + upper bit of the second register id + upper bit of the first register id
|
|
size_t native_instr = 0b01001000L + (EXTRACT_REX_BIT(reg2_id) << 2) + EXTRACT_REX_BIT(reg1_id);
|
|
native_instr += opcode << 8; // opcode
|
|
// registers: direct addressing + lower 3 bit of second reg id + lower 3 bit of first reg id
|
|
native_instr += (0b11000000L + (reg2_id << 3) + reg1_id) << 16;
|
|
|
|
write_instr(code, offset, (uint8_t *)&native_instr, 3);
|
|
native_instr = 0;
|
|
}
|
|
|
|
void gen_code(uint8_t *code, Instruction *program, size_t program_len) {
|
|
// https://pyokagan.name/blog/2019-09-20-x86encoding/
|
|
// https://wiki.osdev.org/X86-64_Instruction_Encoding
|
|
size_t offset = 0;
|
|
size_t acc = 0;
|
|
size_t native_instr = 0;
|
|
uint8_t reg1_id;
|
|
uint8_t reg2_id;
|
|
|
|
// prolog: zero out registers
|
|
for (Register reg = Adelheid; reg < COUNT_REGISTERS; ++reg) {
|
|
// xor reg, reg
|
|
gen_3B_native_instr(0x31, register_id_lookup[reg], register_id_lookup[reg], code, &offset);
|
|
}
|
|
|
|
for (size_t pc = 0; pc < program_len; ++pc) {
|
|
Instruction instr = program[pc];
|
|
switch (instr.opcode) {
|
|
// TODO: encode regs
|
|
case ADD:
|
|
// add reg1, reg2
|
|
gen_3B_native_instr(0x01, register_id_lookup[instr.reg1], register_id_lookup[instr.reg2], code, &offset);
|
|
break;
|
|
case ADDI:
|
|
// optimization: fold multiple consecutive ADDI instructions to the same register into one
|
|
if (pc < program_len && program[pc + 1].opcode == ADDI && instr.reg1 == program[pc + 1].reg1) {
|
|
acc += program[pc].imm;
|
|
} else {
|
|
// add reg, acc
|
|
reg1_id = register_id_lookup[instr.reg1];
|
|
native_instr = (0b01001000L + EXTRACT_REX_BIT(reg1_id)); // REW.X prefix (we use 64bit registers) + upper bit of the first register id
|
|
native_instr += 0x81L << 8; // opcode
|
|
native_instr += (0b11000000L + reg1_id) << 16; // registers: direct addressing + lower 3 bit of first reg id
|
|
native_instr += ((size_t)program[pc].imm + acc) << 16; // immediate
|
|
write_instr(code, &offset, (uint8_t *)&native_instr, 7);
|
|
native_instr = 0;
|
|
acc = 0;
|
|
}
|
|
break;
|
|
case SUB:
|
|
// add reg1, reg2
|
|
gen_3B_native_instr(0x29, register_id_lookup[instr.reg1], register_id_lookup[instr.reg2], code, &offset);
|
|
break;
|
|
case COPY:
|
|
// optimization: COPY from and to a register is a nop
|
|
reg1_id = register_id_lookup[instr.reg1];
|
|
reg2_id = register_id_lookup[instr.reg2];
|
|
if (reg1_id == reg2_id)
|
|
break;
|
|
|
|
// mov reg1, reg2
|
|
gen_3B_native_instr(0x89, reg1_id, reg2_id, code, &offset);
|
|
break;
|
|
case LOADI:
|
|
// optimization: multiple consecutive loads to the same register are unnecessary
|
|
if (pc < program_len && program[pc + 1].opcode == LOADI && instr.reg1 == program[pc + 1].reg1)
|
|
break;
|
|
|
|
reg1_id = register_id_lookup[instr.reg1];
|
|
native_instr = (0b01001000L + EXTRACT_REX_BIT(reg1_id)); // REW.X prefix (we use 64bit registers) + upper bit of the first register id
|
|
native_instr += 0xc7 << 8; // opcode
|
|
native_instr += (0b11000000L + reg1_id) << 16; // registers: direct addressing + lower 3 bit of first reg id
|
|
native_instr += ((size_t)program[pc].imm) << 16; // immediate
|
|
write_instr(code, &offset, (uint8_t *)&native_instr, 7);
|
|
native_instr = 0;
|
|
break;
|
|
default:
|
|
puts("Found invalid instruction!");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
// epilog: exit program, use lower 8bit of Adelheid as return value
|
|
// mov rdi, Adelheid
|
|
gen_3B_native_instr(0x89, 0b0111, register_id_lookup[Adelheid], code, &offset);
|
|
// mov rax, SYS_EXIT (i.e. mov rax, 0x3c)
|
|
*(uint64_t *)&code[offset] = 0x0000003cc0c748;
|
|
// syscall
|
|
*(uint16_t *)&code[offset + 7] = 0x050f;
|
|
}
|
|
|
|
int run_jit(Instruction *program, size_t len) {
|
|
// TODO:
|
|
size_t expected_code_len = 0;
|
|
// page alignment
|
|
size_t allocated_code_len = (expected_code_len + 0xFFF) & ~0xFFF;
|
|
|
|
// allocate memory for context and code
|
|
uint8_t *code = (uint8_t *)mmap(NULL, allocated_code_len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (code == (void *)-1) {
|
|
puts("Cannot mmap memory for code.");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
gen_code(code, program, len);
|
|
|
|
// make code executable and non-writeable
|
|
if (mprotect(code, allocated_code_len, PROT_READ | PROT_EXEC) != 0) {
|
|
puts("Cannot make code executable!");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
int child_pid = fork();
|
|
switch (child_pid) {
|
|
case -1:
|
|
puts("I'm infertile, I cannot have a child \U0001F62D");
|
|
exit(EXIT_FAILURE);
|
|
case 0:
|
|
// child
|
|
exec_code(code);
|
|
__builtin_unreachable();
|
|
default:
|
|
// parent
|
|
break;
|
|
}
|
|
|
|
// continue in the parent; child never gets here
|
|
|
|
// unmap allocated memory
|
|
if (munmap(code, allocated_code_len) != 0) {
|
|
puts("Cannot unmap code.");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// wait for child and extract exit code
|
|
int wstatus = 0;
|
|
if (waitpid(child_pid, &wstatus, 0) == -1) {
|
|
puts("waitpid failed!");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (!WIFEXITED(wstatus)) {
|
|
puts("Program crashed! WHAT?");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
uint8_t exit_code = WEXITSTATUS(wstatus);
|
|
|
|
return exit_code;
|
|
}
|
|
|
|
int main() {
|
|
// TODO: signal handlers? SIGCHILD? seccomp?
|
|
|
|
// TODO: better pun, add reference to pop-culture
|
|
puts("Welcome to JIT-aaS (Just In Time - always a Surprise)");
|
|
|
|
Instruction *program;
|
|
size_t program_len;
|
|
int exit_code;
|
|
|
|
while (true) {
|
|
// TODO: check for password and enable premium mode
|
|
program = get_program(&program_len);
|
|
if (!validate_program(program, program_len)) {
|
|
puts("Your program is not valid. You possibly use invalid opcodes or registers!");
|
|
free(program);
|
|
continue;
|
|
}
|
|
|
|
exit_code = run_jit(program, program_len);
|
|
|
|
printf("Your program exited with %d\n", exit_code);
|
|
free(program);
|
|
}
|
|
}
|