Files
TicTacToe-Multiplayer/Server/src/ai/MinMax.java
2021-03-24 23:36:31 +01:00

208 lines
5.8 KiB
Java

package ai;
// Java program to find the
// next optimal move for a player
public class MinMax
{
static char player = 'o', opponent = 'x';
// This function returns true if there are moves
// remaining on the board. It returns false if
// there are no moves left to play.
static Boolean isMovesLeft(char board[][])
{
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
if (board[i][j] == '-')
return true;
return false;
}
// This is the evaluation function as discussed
// in the previous article ( http://goo.gl/sJgv68 )
static int evaluate(char b[][])
{
// Checking for Rows for X or O victory.
for (int row = 0; row < 3; row++)
{
if (b[row][0] == b[row][1] &&
b[row][1] == b[row][2])
{
if (b[row][0] == player)
return +10;
else if (b[row][0] == opponent)
return -10;
}
}
// Checking for Columns for X or O victory.
for (int col = 0; col < 3; col++)
{
if (b[0][col] == b[1][col] &&
b[1][col] == b[2][col])
{
if (b[0][col] == player)
return +10;
else if (b[0][col] == opponent)
return -10;
}
}
// Checking for Diagonals for X or O victory.
if (b[0][0] == b[1][1] && b[1][1] == b[2][2])
{
if (b[0][0] == player)
return +10;
else if (b[0][0] == opponent)
return -10;
}
if (b[0][2] == b[1][1] && b[1][1] == b[2][0])
{
if (b[0][2] == player)
return +10;
else if (b[0][2] == opponent)
return -10;
}
// Else if none of them have won then return 0
return 0;
}
// This is the minimax function. It considers all
// the possible ways the game can go and returns
// the value of the board
static int minimax(char board[][],
int depth, Boolean isMax)
{
int score = evaluate(board);
// If Maximizer has won the game
// return his/her evaluated score
if (score == 10)
return score;
// If Minimizer has won the game
// return his/her evaluated score
if (score == -10)
return score;
// If there are no more moves and
// no winner then it is a tie
if (isMovesLeft(board) == false)
return 0;
// If this maximizer's move
if (isMax)
{
int best = -1000;
// Traverse all cells
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j]=='-')
{
// Make the move
board[i][j] = player;
// Call minimax recursively and choose
// the maximum value
best = Math.max(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i][j] = '-';
}
}
}
return best;
}
// If this minimizer's move
else
{
int best = 1000;
// Traverse all cells
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j] == '-')
{
// Make the move
board[i][j] = opponent;
// Call minimax recursively and choose
// the minimum value
best = Math.min(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i][j] = '-';
}
}
}
return best;
}
}
// This will return the best possible
// move for the player
public int findBestMove(char board[][])
{
int bestVal = -1000;
int row = -1;
int col = -1;
// Traverse all cells, evaluate minimax function
// for all empty cells. And return the cell
// with optimal value.
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j] == '-')
{
// Make the move
board[i][j] = player;
// compute evaluation function for this
// move.
int moveVal = minimax(board, 0, false);
// Undo the move
board[i][j] = '-';
// If the value of the current move is
// more than the best value, then update
// best/
if (moveVal > bestVal)
{
row = i;
col = j;
bestVal = moveVal;
}
}
}
}
return col*3+row;
}
public char[][] convertBoard(String gameState){
char board[][] = new char[3][3];
for (int i = 0; i < gameState.length(); i++) {
int column = i / 3;
int row = i % 3;
board[row][column] = gameState.charAt(i);
}
return board;
}
}