updated speed logger
This commit is contained in:
65
app.py
65
app.py
@@ -1,38 +1,67 @@
|
||||
from flask import Flask, render_template
|
||||
from flask import Flask, render_template, request
|
||||
import sqlite3
|
||||
import pandas as pd
|
||||
from config import DB_PATH
|
||||
from datetime import datetime
|
||||
import math
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
def load_data():
|
||||
# Connect to SQLite database
|
||||
# 1) grab raw
|
||||
conn = sqlite3.connect(DB_PATH)
|
||||
query = "SELECT * FROM speed_tests"
|
||||
df = pd.read_sql(query, conn)
|
||||
df = pd.read_sql("SELECT * FROM speed_tests", conn)
|
||||
conn.close()
|
||||
|
||||
# 2) parse epoch→UTC datetimes, then shift to Europe/Berlin
|
||||
df['datetime'] = (
|
||||
pd.to_datetime(df['timestamp'], unit='s', utc=True)
|
||||
.dt.tz_convert('Europe/Berlin')
|
||||
)
|
||||
|
||||
# 3) for your table display, format as naive strings
|
||||
df['recorded_at'] = df['datetime'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def get_aggregated_data(df: pd.DataFrame, interval: str = '5min'):
|
||||
# ensure 'datetime' is the index
|
||||
df = df.set_index('datetime')
|
||||
|
||||
# 1) resample into N-minute bins, mean
|
||||
agg = (
|
||||
df
|
||||
.resample(interval)
|
||||
.agg({
|
||||
'down_90th': 'mean',
|
||||
'up_90th': 'mean'
|
||||
})
|
||||
.reset_index()
|
||||
)
|
||||
|
||||
# 3) output for Chart.js
|
||||
return {
|
||||
"times": agg['recorded_at'].tolist(),
|
||||
"down_90th": agg['down_90th'].round(2).tolist(),
|
||||
"up_90th": agg['up_90th'].round(2).tolist()
|
||||
}
|
||||
|
||||
|
||||
@app.route('/')
|
||||
def index():
|
||||
df = load_data()
|
||||
agg = request.args.get("agg", "5min")
|
||||
chart_data = get_aggregated_data(df, agg)
|
||||
|
||||
print(f"down last 10: {chart_data['down_90th'][-10:]}")
|
||||
print(f"down last 10: {chart_data['up_90th'][-10:]}")
|
||||
|
||||
print(math.isnan(chart_data['down_90th'][-1]) or math.isnan(chart_data['up_90th'][-1]))
|
||||
|
||||
# Convert timestamps to human-readable format
|
||||
df['datetime'] = pd.to_datetime(df['timestamp'], unit='s')
|
||||
# Suppose your DataFrame is called `df`
|
||||
df["timestamp"] = df["timestamp"].apply(lambda ts: datetime.fromtimestamp(ts).strftime("%Y-%m-%d %H:%M:%S"))
|
||||
#if math.isnan(chart_data['down_90th'][-1]) or math.isnan(chart_data['up_90th'][-1]):
|
||||
#return render_template('local.html', data=df.to_dict(orient='records'), chart_data=chart_data)
|
||||
|
||||
# Collect the data for charts
|
||||
chart_data = {
|
||||
"times": df['datetime'].dt.strftime('%Y-%m-%d %H:%M:%S').tolist(),
|
||||
"down_90th": df['down_90th'].tolist(),
|
||||
"up_90th": df['up_90th'].tolist()
|
||||
}
|
||||
|
||||
return render_template('index.html', data=df.to_dict(orient='records'), chart_data=chart_data)
|
||||
return render_template('index.html', aggregation=agg, data=df.to_dict(orient='records'), chart_data=chart_data)
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(port=5001)
|
||||
app.run(host='0.0.0.0', port=5001)
|
||||
|
||||
Reference in New Issue
Block a user